Journal of Organometallic Chemistry 66 (1974) C1–C2 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PEROXYMERCURATION WITHOUT ACCOMPANYING ACYLOXYMERCURATION

A.J. BLOODWORTH and I.M. GRIFFIN Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H OAJ (Great Britain) (Received December 14th, 1973)

Summary

With mercuric trifluoroacetate and t-butyl hydroperoxide in dichloromethane, olefins react under peroxymercuration without accompanying acyloxymercuration.

The reaction of mercuric acetate and t-butyl hydroperoxide with monosubstituted ethylenes in dichloromethane (eqn.1) was recently developed to provide the basis of an improved route to sec-alkyl-t-butyl peroxides [1,2]. The reaction proceeds rapidly and in high yield at room temperature, but even using a one-fold excess of hydroperoxide, affords products containing up to 20% of acetoxymercurial (I)

 $\begin{array}{c} \text{RCH=CH}_2 + \text{Hg(OAc)}_2 + \text{t-BuOOH} \xrightarrow{\text{CH}_2\text{Cl}_2} \\ \text{RCH(OOBu-t)CH}_2\text{HgOAc} + \text{HOAc} + \text{RCH(OAc)CH}_2\text{HgOAc} & (1) \\ (I) \end{array}$

We have extended reaction (1) to 1,2-disubstituted ethylenes such as 2-butene and cyclohexene, but here competitive acetoxymercuration consumes an even higher proportion of alkene (ca. 30%). For small scale preparations of compounds (II) and (III) the acetoxymercurial (I) has to be removed before the demercurations (eqn.2) are carried out [2]. This is time-consuming and leads to reduced overall yields.

It was shown previously that replacing mercuric acetate by trifluoroacetate in reactions with alkenes in alcohols leads to greatly improved yields of t-butoxymercuration products [3]. We now wish to report that, by a similar replacement, peroxymercuration can be carried out under the usual conditions [4] without accompanying acyloxymercuration (eqn.3); this greatly enhances the synthetic value of peroxymercuration.

$$RCH=CHR^{1} + Hg(OCOCF_{3})_{2} + t-BuOOH \xrightarrow{CH_{2}Cl_{2}} RCH(OOBu-t)CHR^{1}HgOCOCF_{3} + HOCOCF_{3}$$
(3)
(IV)

Reaction (3) has been carried out with ethylene, propene and styrene ($\mathbb{R}^1 = \mathbf{H}$), with *cis*- and *trans*-2-butene and *trans*-3-hexene and with cyclohexene and norbornene ($\mathbb{R}^1 = \mathbb{R}$) to give compounds IV (about 85%) which require little or no purification. Treatment of compounds IV with potassium halide gives the corresponding organomercury halides which for the monosubstituted ethylene and cyclohexene^{*} derivatives were identified by comparison with authentic samples [2,5]. Peroxymercurials derived from the other alkenes are new and have been characterised either as the trifluoroacetate or as the halides by satisfactory elemental analyses and by ¹H NMR spectroscopy.

The absence of the trifluoroacetoxymercurial [RCH(OCOCF₃)CHR¹Hg-OCOCF₃] in the crude products was apparent from their high gain ¹H NMR spectra which showed no CHOCOCF₃ resonances. This held for the *cis*-2-butene derivative even when an excess of only 10% of t-butyl hydroperoxide was used, suggesting that mercuric trifluoroacetate has the added advantage of reducing wastage of hydroperoxide. This conclusion must be regarded with some caution, however, since a reaction with norbornene employing an excess of 5% of t-butyl hydroperoxide afforded a product containing 25% of trifluoroacetoxymercurial.

Another useful contrast with mercuric acetate is that the trifluoroacetate is completely soluble in dichloromethane under the usual working conditions (20 mmol in 30 ml). This has enabled a smooth reaction to be carried out with insoluble hydroperoxides (e.g. eqn.4) [6] and may provide an opportunity to study poorly soluble alkenes.

PhCH(OOH)CH₂HgOAc
$$\frac{(i)PhCH=CH_2 + Hg(OCOCF_3)_2}{(ii) KCl} [PhCH(CH_2HgCl)O]_2 \quad (4)$$

A final aspect of employing mercuric trifluoroacetate is that the cleanness of the peroxymercuration of *cis*- and *trans*-2-butene permits a clear demonstration by ¹H NMR spectroscopy that these reactions are stereospecific.

References

- 1 D.H. Ballard, A.J. Bloodworth and R.J. Bunce, Chem. Commun., (1969) 815.
- 2 D.H. Ballard and A.J. Bloodworth, J. Chem. Soc., C, (1971) 945.
- 3 H.C. Brown and M.-H. Rei, J. Amer. Chem. Soc., 91 (1969) 5646.
- 4 A.J. Bloodworth and G.S. Bylina, J. Chem. Soc. Perkin I. (1972) 2433.

*Schmitz et al. [5] quote τ 5.1m for the CHOO resonance of the cyclohexene peroxymercurial but we find τ 5.9m for this and τ 5.1m for the CHOAc resonance of the acetoxymercurial.

⁵ E. Schmitz, A. Reiche and O. Brede, J. Prakt. Chem., 312 (1970) 30.

⁶ A.J. Bloodworth and M.E. Loveitt, unpublished work.